Searching for Stellar Siblings: Testing Chemodynamical Tagging of Open Clusters in the Milky Way
Barth et al. tested how well stars from open clusters can be identified using their chemical and orbital properties. They found that orbital dynamics performed better than chemistry, but recovery rates remained low. Even with data cuts and added chemical elements, clustering algorithms struggled to reliably find clusters in large datasets.
Exploring the Galactic Halo with RR Lyrae Stars
Cabrera Garcia et al. analyze over 135,000 RR Lyrae stars to study the Milky Way’s halo structure. They confirm the existence of inner and outer halo components and identify 97 dynamically tagged groups (DTGs) using motion-based clustering. Many DTGs align with known galactic substructures, such as Gaia-Sausage-Enceladus and the Helmi Stream, highlighting past galaxy mergers. Their findings reinforce the idea that the Milky Way’s halo formed through multiple accretion events.