Unwrapping the Milky Way’s Warp: Insights from Classical Cepheids
Zhou et al. used Cepheids from Gaia to model the Milky Way’s warp, finding it starts closer to the center than thought, rises smoothly outward, and twists into a leading spiral. Their best-fit model also measured a slow, nearly uniform precession rate of about 4.86 km/s/kpc, offering insights into the warp’s structure and evolution.
Galactic Warps Through Time: Bending Disks from the Early Universe to Today
This study analyzes nearly 1,000 edge-on galaxies to track how common and strong vertical disk warps were over time. The researchers find that S-shaped warps were far more frequent and pronounced around 10 billion years ago, likely due to increased galaxy interactions and gas content. These results suggest warps are key indicators of a galaxy’s dynamic past.