Counting the Milky Way’s Hidden Satellites: The DELVE Census
Tan and collaborators present the DELVE Milky Way Satellite Census, combining DES, DELVE, and PS1 data to search for faint companion galaxies. Using strict detection methods and efficiency tests, they recovered 49 known satellites and predicted about 265 in total. The results show satellites cluster near the Large Magellanic Cloud and broadly match cosmological predictions, offering key insights into galaxy formation and dark matter.
Unraveling the Mystery of the Faintest Galaxies: A Deep Dive into Sagittarius II and Aquarius II
Astronomers used the Gemini/GHOST spectrograph to study Sagittarius II (Sgr2) and Aquarius II (Aqu2), two faint Milky Way satellites. Their analysis suggests Aqu2 is a dark matter-dominated ultra-faint dwarf galaxy, while Sgr2 remains ambiguous, possibly a star cluster. Chemical signatures and star movements were key to these classifications. The study highlights the difficulty in distinguishing faint galaxies from clusters and the need for further observations and simulations.
Unveiling the Structure of Milky Way Satellite Planes: Exploring Planarity in a Cosmic Context
The study introduces "planarity" to assess the alignment of Milky Way satellite galaxies, finding significant positional but inconclusive kinematic coherence due to velocity data errors. Simulations reveal that such planarity is common and kinematically supported in MW-like galaxies, aligning with the ΛCDM model. This suggests satellite planes are shaped by cosmic web structures and are consistent with hierarchical galaxy formation theories.