Binary Stars Illuminate the Secrets of NGC 2506: A Precise Age and Distance for a Middle-Aged Star Cluster
Kadri Yakut et al. used data from Gaia, TESS, and ground-based telescopes to analyze five binary stars in the open cluster NGC 2506. By jointly modeling their light, velocity, and energy distributions, the team derived a precise cluster age of 1.94 billion years and a distance of about 3,200 parsecs. This method demonstrates how binary systems can accurately reveal a cluster’s age, distance, and evolutionary state.
Tracing the Milky Way’s Past: How Globular Clusters Reveal the History of the Gaia-Sausage-Enceladus Merger
Fernando Aguado-Agelet and colleagues studied 13 globular clusters linked to the Gaia-Sausage-Enceladus (GSE) merger to trace the Milky Way’s history. They found most clusters follow a clear age-metallicity pattern, with two distinct star-formation bursts about 2 billion years apart, likely triggered by GSE’s interaction with the Milky Way. Two clusters probably formed in the Milky Way, and two others may belong to different mergers.
Clocking the Cosmos: Measuring the Ages of Milky Way’s Ancient Star Clusters
This study uses advanced modeling and Hubble data to estimate the absolute ages of eight Milky Way globular clusters. By comparing synthetic and observed color-magnitude diagrams, the authors find ages ranging from 11.6 to 13.2 billion years. Distance and reddening are the largest sources of uncertainty, and results support a trend of older ages for metal-poor clusters.
Tracing Galactic History: Age and Motion in the Milky Way Disk
Weixiang Sun et al. studied over 230,000 red clump stars to explore how stellar motions vary with age across the Milky Way’s thin and thick disks. They found that older stars have higher velocity dispersions, with differences shaped by processes like giant molecular cloud heating, spiral arms, and galaxy mergers. The study highlights the thin disk’s gradual heating and the thick disk’s turbulent formation, offering insights into the Milky Way’s dynamic history.