Unraveling Nephele: The Hidden Galaxy Behind Omega Centauri
Pagnini et al. (2025) reveal that Omega Centauri was once the core of a vanished dwarf galaxy named Nephele. Using stellar chemistry and motion data from APOGEE, they identify hundreds of stars once belonging to this system. Their findings suggest Nephele’s remnants form extended stellar streams, showing how the Milky Way grew by merging with smaller galaxies.
Tracing the Origins of ω Centauri: A Chemical and Orbital Investigation of Globular Clusters
This study explores ω Centauri’s origins by analyzing the chemical compositions and orbits of similar globular clusters, suggesting they may all stem from a common progenitor—an ancient dwarf galaxy disrupted by the Milky Way’s gravitational forces. Using data from the APOGEE catalog and advanced modeling techniques, six clusters were identified with chemical abundances and metallicity distributions closely matching ω Centauri. Their orbital characteristics further support an accretion origin, contributing to the understanding of how interactions with smaller galaxies have shaped the Milky Way.